

What is it?

- The worlds only polymer cerclage cabling system
- Cable is made with Nylon core and UHMWPe sheath (non-resorbable)
- Clasp is made from Ti 6AI/4V
- Cable diameter = 1.5mm x 2 strands

- Metal cables have high rates of fatigue failure (Ritter – 32.5% breakage)
- Broken cables result in fixation loss and can be painful and can require additional surgery for removal.

Why polymer instead of metal?

 Failed metal cable migrating through the skin

Photos and x-ray courtesy of Tom Norris, MD San Francisco, CA

Why polymer instead of metal?

 Metal cables liberate metal particle debris

Fatigue Testing of Cerclage Stainless Steel Wire Fixation

Mathias P. G. Bostrom, *Stanley E. Asnis, Jens J. Ernberg, Timothy M. Wright,
Virginia L. Giddings, †Wayne S. Berberian, and *Albert A. E. Missri

DISCUSSION

Although wire breakage is often viewed as an inconsequential radiographic finding, in reality it has been and remains a major problem in orthopaedic surgery. The estimated rates of breakage of monofilament wire used for reattachment of the greater trochanter during total hip arthroplasty vary from 17% to 32% (6). In addition to the problems of non-union, delayed union, and loss of trochanteric position, these broken wires pose a significant threat of migrating into the joint resulting in significant third body wear (1,3,6). Sir John Charnley recog-

- UHMWPe has superior fatigue strength and abrasion resistance as compared to metal cable
- Wear/Fatigue test described on brochure
- SuperCable provides a super tough, super durable cerclage system

Why polymer instead of metal?

"Iso-Elastic™"

- SuperCable has engineered elasticity
- Elasticity provides dynamic compression across construct offering the possibility of improved healing

Why polymer instead of metal?

"Iso-Elastic™"

- Metal cables dig into bone
- Metal cables then become lose and micromotion ensues
- SuperCable can compensate due to elastic energy stored

Other Features:

Each cable provides two strands instead of one

- Spreads the compressive load over twice the area
- This "snowshoe" effect may reduce the bone cutting or grooving often seen with metal

- No sharp cable ends to irritate patient tissue
- May require revision surgery for cable removal

- No sharp cable ends to cut surgeons gloves
- Can be dangerous for surgeon finding and removing broken cables

- No sharp cable ends to cut surgeons gloves
- Sharp cable ends can be dangerous during placement
- Exposes surgeon and patient to increased infection risk

Sharp frayed end of previously placed metal cable

Great Instrumentation

Simple, quick and easy to use

 Cable tensioner is also the cable locking device

Great Instrumentation

- Cables can easily be retightened after locking
- Faster, simpler system eliminates cumbersome tension retaining devices

Indications:

 Fixation of fractures and osteotomies in long bones

Typical Uses

- Revision THR trochanteric osteotomy
- Revision THR femoral osteotomy
- Revision THR onlay grafting
- Revision SR onlay grafting
- Periprosthetic fractures (hip, shoulder, knee)
- Olecrenon fracture
- Patella fracture

Selling Strategies

Evaluation surgery tips

- Perform a quick "sawbones" demo with surgeon before the case so he/she understands details of instrument usage!
- Teach proper orientation of cable passer
- Teach proper orientation of cable clasp
- Allow surgeon to use tensioning instrument to tighten and lock a cable on a sawbones

Won't the UHMWPe sheath result in poly wear debris?

- No, the gel-spun poly sheath is extremely resistant to wear as shown by testing to 1 million cycles over metal plate
- In this extreme test there is very little loss of poly as compared to the volumes lost in total joint implants

Why polymer instead of metal?

 SuperCable can be placed over metal implants

(sharp edges are to be avoided)

How does the strength of SuperCable compare to metal cable systems?

- Strength can be measured in two ways:
 - tensile strength (single max load) and
 - fatigue strength (repetitive load)
- Breakage in cabling systems are generally caused by fatigue failure not tensile failures!

How does the strength of SuperCable compare to metal cable systems

- The chart below compares fatigue strength (cycles to failure) of SuperCable to that of metal cables and wires
- The figures for metal cerclage systems were taken from the literature and those from SuperCable from in-house testing described here and on the brochure
- All metal systems started seeing failure at 100,000 cycles while SuperCable saw none at 1 million cycles with higher loading!

Cerclage Type	Cyclic Load	Cycles to Failure
SuperCable	100 pounds	No failures at 1 million cycles
Stainless steel wire	35 – 80 pounds	100,000 cycles
Titanium alloy cable	20 – 50 pounds	100,000 – 1 million cycles
Cobalt-chrome alloy cable	20 – 50 pounds	100,000 – 1 million cycles

How does the strength of SuperCable compare to metal cable systems

Cerclage Type	Tensile Strength
SuperCable	~250 pounds
Stainless steel wire	70 – 150 pounds
Titanium alloy cable	250 – 460 pounds
Cobalt-chrome alloy cable	300 – 700 pounds

- For the record, the chart alongside compares tensile strength of SuperCable to metal cables and wires
- Remember though it is not tensile failures that are a problem - fatigue failure causes breakage of metal cerclage!

How much bone compression is applied at the "low" and "high" marks on the tensioning knob?

- "Low" mark = approximately 80 lbs. (360N) of compressive force
- "High" mark = approximately 120 lbs. (530N) of compressive force

How do I determine if I should tension to "low" vs. "high" when applying the cable

- "Low" may be appropriate for patients that have compromised bone strength (osteopenia, etc.)
- "High" may be appropriate for large bones in high load areas in patients with good bone strength
- In all cases the surgeon should exercise his/her clinical judgment when tensioning the cable

I can see where the "Iso-Elastic" stored energy in the SuperCable may provide greatly improved fixation and stability but could there be too much energy stored leading to bone necrosis?

- This has not been seen in the clinical follow-up we have collected (see Clinical Data PP)
- The SuperCable also relaxes and loses a portion of its compressive load over time

Tell me more about this cable relaxation – won't this result in loss of fixation?

- No, compressive force remains despite some cable relaxation
- This is in marked contrast to a nonelastic metal cable that can loose all compressive force as soon as the cable grooves into the bone!

How quickly does this relaxation occur?

- Relaxation tests show that initial cable tension decreases by approximately 40% after 8 weeks of static loading.
- The majority of loss occurs after the first day and only 1% of the total loss occurs during the final 30 days of the test.
- Steady-state tension is reached and maintained after a relatively short period of time.